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ABSTRACT

We revisit the well known Sweet-Parker (SP) model for magnetic reconnection in the framework of

two dimensional incompressible magnetohydrodynamics. The steady-state solution is re-derived by

considering a non zero viscosity via the magnetic Prandtl number Pm. Moreover, contrary to the

original SP model, a particular attention is paid to the possibility that the inflowing magnetic field

Be and the length of the current layer L are not necessarily fixed and may depend on the dissipation

parameters. Using two different ideally unstable setups to form the current sheet, namely the tilt

and coalescence modes, we numerically explore the scaling relations with resistivity η and Prandtl

number Pm during the magnetic reconnection phase, and compare to the generalized steady-state SP

theoretical solution. The usual Sweet-Parker relations are recovered in the limit of small Pm and η

values, with in particular the normalized reconnection rate being simply S−1/2(1 + Pm)−1/4, where

S represents the Lundquist number S = LVA/η (VA being the characteristic Alfvén speed). In the

opposite limit of higher Pm and/or η values, a significant deviation from the SP model is obtained

with a complex dependence Be(η, Pm) that is explored depending on the setup considered. We discuss

the importance of these results in order to correctly interpret the numerous exponentially increasing

numerical studies published in the literature, with the aim of explaining eruptive phenomena observed

in the solar corona.

Keywords: magnetic reconnection – magnetohydrodynamics (MHD) – plasmas – Sun: flares

1. INTRODUCTION

Since its introduction, the Sweet-Parker (SP) model is considered to be the solution of reference for magnetic

reconnection solution in two-dimensional (2D) Magnetohydrodynamic (MHD) framework (Sweet 1958; Parker 1957;

Priest & Forbes 2000). It assumes incompressibility of the flow and the viscosity effect is neglected. The model also

focus on a steady-state solution in presence of a pre-formed current sheet of fixed half-length L and fixed inflowing

magnetic field Be far from the layer. The results are very enlightening as the outflow velocity is simply given by the

Alfvén speed VA, based on Be with VA = Be/(ρµ0)1/2 (where ρ is the constant and uniform mass density, and µ0

is the vacuum magnetic permeability parameter). The half-width of the current sheet is also given by δ = LS−1/2,

where S = LVA/η is the Lundquist number (η being the magnetic diffusivity or the resistivity parameter). Finally

the reconnection rate which measures the speed of the process (in dimensionless units using the Alfvén velocity for

normalization) is simply given by S−1/2.

The above scaling relations often serve as a reference in order to test MHD codes and compare with results obtained

in numerical experiments. However, all MHD codes always contain a non zero viscosity, at least due to the numerical

scheme. Consequently, the original SP model must be modified to take into account viscosity effect, in order to allow

for more precise theoretical scaling laws and consequently a correct interpretation of the numerical results. As this

is rarely considered in the literature, to the exception of the study of Park et al. (1984) in the context of tokamak

plasmas, we propose to revisit this point in the present work. Moreover, we relax the assumption of the independence

of L and Be with the dissipation parameters. For example, the dependence of Be with the resistivity η was shown to

be important in order to interpret numerical experiments using coalescence instabilities (Biskamp & Welter 1980; De

Luca & Craig 1992).
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Figure 1. Schematic view of the standard Sweet-Parker reconnection model in a two-dimensional (x− y)-plane. Magnetic field
lines of magnitude (Be in blue and red) are advected at an inflowing speed Ve (along the x-axis) towards a central diffusive
region of dimensions 2δ × 2L (defining the current sheet layer) where the direction of the magnetic field has a reversal. The
reconnected field lines of magnitude (Bs in green) are expelled from the centre (e.g. X-point) and accelerated along the current
sheet (i.e. y-axis), reaching an outflow speed Vs.

In order to test our scaling laws, we use two different setups based on an initial ideal MHD instability in order to

form the current sheet. In this way, contrary to the use of a resistive instability (as for example the tearing mode),

the initial linear phase is not (or weakly) influenced by the dissipation parameters. We choose the tilt and coalescence

configurations to do so in the numerical experiments. We use a strongly adaptive finite-element code, FINMHD, which

has been specifically designed to address such reconnection problem within the framework of reduced visco-resistive

MHD in a two-dimensional Cartesian geometry Baty (2019). Note that we focus on the regime where the Lundquist

number S is limited to values lower than a critical value Sc (that is Sc ' 104 in the limit of vanishing viscosity), in

order to exclude the stochastic reconnection regime dominated by the presence of plasmoids (Loureiro et al. 2007;

Comisso & Grasso 2016; Baty 2020a,b,c).

The outline of the paper is as follows. In Section 2, we derived the reconnection solution with generalized SP scaling

laws including the viscosity effect. We briefly present the code and the initial setups in Section 3. Section 4 is devoted

to the presentation of the results. Finally, we conclude in Section 5.

2. GENERALIZED SWEET-PARKER (SP) RECONNECTION MODEL

The schematic structure of the SP configuration is visible in Figure 1. We consider a current sheet having a full

length 2L and a full thickness 2δ. The first equation used is the incompressibility condition of the flow ∇ · V = 0,

leading thus to
‚
S

V · dS = 0 where the integral is taken over the surface S enclosing the current sheet volume.

Consequently, the first relation that is in fact the mass flux conservation between entrance and exit of the current

sheet is,

VeL = Vsδ, (1)

with Vs denoting the outflow velocity of the reconnected field lines (Ve being the inflow speed).

The second equation used can be deduced from Faraday’s law ∇×E = −∂B∂t , and Ohms’s law E = −V ×B+µ0ηJ for

the electric field E. Assuming steady-state thus leads to a uniform value for the electric field component perpendicular

to the plane Ez = −(V ×B)z + µ0ηJz. The value of Ez in the inflowing region must be thus equal to the value in

the outflowing region, that are moreover considered to be regions where the resistive term (ηJz) is negligible, leading
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to the second relation,

Ez = VeBe = VsBs, (2)

that is in fact a magnetic flux conservation between entrance and exit of the current layer. Note that the resistivity

parameter η used here, denotes the magnetic diffusivity (m2/s in MKSA units) and does not encompass µ0 as sometimes

chosen in other studies.

Using the dominance of the resistive term over the ideal one inside the current layer (as the magnetic field is reversing

at the center), one gets another estimate for the electric field that is Ez = µ0ηJz which can be approximated by,

Ez ' ηBe/δ, (3)

using Ampere’s law ∇×B = µ0J and assuming a very small thickness δ compared to L (to be a posteriori checked).

A symmetric reversal is also taken for the sake of simplification.

The dynamics of the process is determined by the momentum conservation equation, which can be written in a

steady-state form (neglecting the thermal pressure gradient), (V ·∇)V = J×B
ρ + ν∇2V , where ρ denotes the uniform

mass density. As done in the original SP model, one can integrate this equation along the current sheet between the

centre (y = 0) and the exit (y = L) assuming a linear variation of the outflowing fields (i.e. Vy and Bx components).

The centre of the 2D cartesian frame is taken at the X-point. Equivalently, one can evaluate the different terms at mid-

distance (y = L/2) by taking the average values Vs/2 and Bs/2 for the velocity and magnetic field respectively. The

current density term in the magnetic force is however nearly constant along the current sheet (checked in simulations)

and is consequently evaluated by its maximum value JM taken at the centre µ0JM ' Be/δ. Consequently, we obtain
Vs

2
(Vs−0)
L ' JMBs

2ρ − ν Vs

2δ2 , leading to the fourth relation,

Vs(Vs + ν
L

δ2
) ' BsBe

ρµ0

L

δ
. (4)

Combining Eq.1 and Eq.2, one can easily check that Be = BsL/δ. Moreover, using Eqs. 1-3, we have L/δ2 ' Vs/η.

Inserting these two results in the fourth above relation, one can get the important expression for the outflow velocity,

Vs '
Be

(ρµ0)1/2
1

(1 + ν/η)1/2
. (5)

Note that the Alfvén speed Vs ' VA = Be

(ρµ0)1/2
of the standard inviscid SP model is obviously recovered in the limit of

zero viscosity (i.e. vanishing magnetic Prandtl number), and that the outflow is slowed down by a factor (1 + Pm)1/2

by the viscous force (as Pm is defined as Pm = ν/η). The latter result was previously derived by Park et al. (1984) in

the context of magnetic reconnection in tokamak plasmas.

As a consequence, the important results (useful for the present work) can be derived as,

Vs ' VA(1 + Pm)−1/2 = ρ−1/2µ
−1/2
0 Be(1 + Pm)−1/2

δ ' ρ1/4µ1/4
0 L1/2B−1/2

e η1/2(1 + Pm)1/4

JM ' ρ−1/4µ
−5/4
0 L−1/2B3/2

e η−1/2(1 + Pm)−1/4

ΩM ' ρ−3/4µ
−3/4
0 L−1/2B3/2

e η−1/2(1 + Pm)−3/4,

(6)

where the maximum associated vorticity ΩM is estimated via ΩM ' V0/δ. One may note that, the expected scalings

using the Lundquist number S, δ/L ∝ S−1/2(1 + Pm)1/4, JM ∝ S1/2(1 + Pm)−1/4, and ΩM ∝ S1/2(1 + Pm)−3/4 can

be also deduced. The reconnection rate is also an important parameter, that can be defined by using the electric field

Ez = µ0ηJM , or its normalized value Ez/(VABe) (that is also equivalently given by the inflow Mach number Ve/VA),

leading thus to, {
Ez ' ρ−1/4µ

−1/4
0 L−1/2B3/2

e η1/2(1 + Pm)−1/4,

Ez/(VABe) ' ρ1/4µ1/4
0 L−1/2B−1/2

e η1/2(1 + Pm)−1/4.
(7)

We have deliberately expressed the results in the above expressions in function of L and Be, which are not necessarily

taken to be constant in this study. This is not the case of the parameters ρ and µ0 which can be taken to be constant

and equal to unity in the following.
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Figure 2. Initial configuration of the Fadeev equilibrium (or coalescence setup) for the current density (with colored iso-contour
values) overlaid with associated magnetic field lines for two values of the ε parameter i.e. ε = 0.2 and ε = 0.4 for the left and
right panel respectively. The other chosen parameters are B0 = 1, k = 2π, and α = 0.

Figure 3. Initial configuration of the magnetic dipole equilibrium (or tilt setup) for the current density (with colored iso-contour
values) overlaid with associated magnetic field lines. The chosen parameters are B0 = 1 and R = 1, and the configuration has
an external region extending to the outer boundary situated at r = 3.

3. FINMHD CODE AND INITIAL SETUPS

3.1. FINMHD code

The usual set of reduced MHD equations in two dimensions (2D) (i.e. x − y plane) is generally admitted to be a

good approximation to represent the dynamics in a plane perpendicular to a dominant and constant magnetic field

component (Bz). As a consequence, the incompressibility assumption in the 2D plane is considered to be well justified.

In this work, we use the reduced MHD formulation with two scalar variables like stream functions (hereafter φ and ψ),

as this automatically ensures the divergence-free property for the corresponding plasma velocity and magnetic field

vectors (V and B respectively). Moreover, in order to facilitate the numerical implementation, a dimensionless model

using the electric current density J and the flow vorticity Ω for the main variables is adopted in FINMHD (Baty 2019),
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∂Ω

∂t
+ (V ·∇)Ω = (B ·∇)J + ν∇2Ω, (8)

∂J

∂t
+ (V ·∇)J = (B ·∇)Ω + η∇2(J − Je) + g(φ, ψ), (9)

∇2φ = −Ω, (10)

∇2ψ = −J, (11)

with g(φ, ψ) = 2
[
∂2φ
∂x∂y

(
∂2ψ
∂x2 − ∂2ψ

∂y2

)
− ∂2ψ

∂x∂y

(
∂2φ
∂x2 − ∂2φ

∂y2

)]
. We have introduced the two stream functions, φ(x, y) and

ψ(x, y), defined as V = ∇φ ∧ ez and B = ∇ψ ∧ ez (ez being the unit vector perpendicular to the xOy simulation

plane). Note that J and Ω are the z components of the current density and vorticity vectors, as J = ∇ ∧ B and

Ω = ∇∧V respectively (with units using µ0 = 1). Note also that we consider the resistive diffusion via the η∇2J term

(η being the resistivity assumed uniform for simplicity), and also a viscous term ν∇2Ω in a similar way (with ν being

the viscosity parameter). The above definitions results from the choice ψ ≡ Az, where Az is the z component of the

potentiel vector A (as B = ∇∧A). FINMHD code is based on a finite element method using triangles with quadratic

basis functions on an unstructured grid. A characteristic-Galerkin scheme is chosen in order to discretize in a stable

way the Lagrangian derivatives appearing in the two first equation. Moreover, a highly adaptive (in space and time)

scheme is developed in order to follow the rapid evolution of the solution, using either a first-order time integrator

(linearly unconditionally stable) or a second-order one (subject to a CFL time-step restriction). Typically, a new

adapted grid can be computed at each time step, by searching the grid that renders an estimated error nearly uniform.

More precisely, the method allows to cover the current structures with a few tens of triangles at any time, by using the

Hessian matrix of the current density as the main refinement parameter. The technique used in FINMHD has been

tested on challenging tests, involving unsteady strongly anisotropic solution for the advection equation, formation of

shock structures for viscous Burgers equation, and magnetic reconnection for the reduced set of MHD equations. The

reader should refer to Baty (2019) for more details on the numerical scheme and also to the following references for

applications to different aspects of magnetic reconnection in MHD framework (Baty 2020a,b,c).

3.2. The two initial setups

In the previous section, the current sheet is assumed to be preformed. In order to get a more realistic configuration,

the process of formation of the current layer must be included. On the other hand, the non linear development of

ideal MHD instabilities are known to be an efficient mechanism to form such layers in different plasmas (e. g. solar

corona and tokamaks). Two different well known 2D setups associated to the coalescence and tilt instabilities are thus

considered in this study in order to test the scaling laws derived in the previous section.

• The coalescence setup

The first setup represents a chain of neighboring magnetic islands in equilibrium. As initially demonstrated by

using an energy principle calculation, such configuration is unstable leading to the coalescence of the islands in

a pairwise way (Finn & Kaw 1977; Pritchett & Wu 1979; Bondeson 1983). This is a current driven mode due to

the tendency to attract between two currents of same sign flowing in the interior of two corresponding adjacent

islands. Different choices of magnetic configuration have been done in the literature depending mainly on the

use of boundary conditions (non periodic versus singly periodic or doubly periodic) available in the subsequent

numerical treatment. In the present study, we consider the Fadeev equilibrium, defined by the equilibrium flux

function ψe,

ψe(x, y) = −B0

k
ln[cosh(ky) + ε cos(kx+ α)]. (12)

where k and ε (with 0 < ε < 1) are real parametrization parameters, and B0 being a magnetic field normalization

magnitude. Note that we have added a non zero arbitrary phase parameter α for the seek of generality. The

above expression follows from the force balance equation condition (Finn & Kaw 1977),

∇2ψe + f(ψe) = 0, (13)
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with the particular choice f(ψe) = B0k(ε2− 1)e2kψe/B0 that is also the opposite value of the equilibrium current

density, i.e. −Je. One can check the corresponding equilibrium magnetic field components as,

Bx(x, y) = − B0 sinh(ky)

cosh(ky) + ε cos(kx+ α)
, (14)

By(x, y) = − εB0 sin(kx)

cosh(ky) + ε cos(kx+ α)
, (15)

and the equilibrium current density expression,

Je(x, y) = B0(1− ε2)
k

[cosh(ky) + ε cos(kx+ α)]2
. (16)

The configuration is illustrated in Figure 2 for two values of ε, which is a measure of the width of the islands

w, as more precisely it can be easily shown that wk ' 4ε1/2. One must note that, a thermal pressure gradient

is required in order to have a 2D MHD equilibrium in the momentum conservation for a standard MHD model

with the velocity flow implementation. However, this is not needed in our 2D reduced MHD model with vorticity

implementation.

• The tilt setup

The initial magnetic field configuration for tilt instability is a dipole current structure similar to the dipole vortex

flow pattern in fluid dynamics, where the vorticity is replaced by the current density (Richard et al. 1990). It

consists of two oppositely directed currents embedded in a background current-free magnetic field with uniform

amplitude at infinitely large distance. Contrary to the coalescence instability based on attracting parallel current

structures, the two antiparallel currents in the configuration tend to repel. The initial equilibrium is thus defined

by taking the following magnetic flux distribution,

ψe(x, y) =


B0

(
R2

r
− r
)
y

r
if r > R,

−B0
2

αJ0(αR)
J1(αr)

y

r
if r ≤ R. (17)

And the corresponding current density is,

Je(x, y) =


0 if r > R,

−B0
2α

J0(αR)
J1(αr)

y

r
if r ≤ R, (18)

where r =
√
x2 + y2, and J0 et J1 are Bessel functions of order 0 and 1 respectively. Note also that αR is the

first (non zero) root of J1, i.e. αR ' 3.83170597. The configuration is illustrated in Figure 3 for the chosen

parameters R = 1 and B0 = 1, with an outer boundary limit situated at r = 3. A circular outer boundary is

chosen in this study in order to facilitate the numerical treatment, and it is also placed sufficiently far enough

away from the dipole region in order to have a negligible effect on the dynamics. As for coalescence setup, this

dipole structure requires a thermal pressure in order to be in 2D equilibrium, or alternatively an additional

magnetic field component Bz having a (x, y) dependence is needed for a 2.5D equilibrium.

In this work, we don’t impose any initial specific perturbation, as we let the instabilities develop from the numerical

noise introduced by the scheme. For the Fadeev equilibrium setup, the boundary conditions are chosen to be periodic

in x direction and Dirichlet-like in the y direction (with values imposed on the different variables to be equal to their

initial values). For the tilt equilibrium setup, similar Dirichlet-like conditions are also imposed at the external radial

boundary (see also Baty (2019)). Convergence on our numerical procedure used with FINMHD code with in particular

the presentation of the adaptive (in time and space) method can be found elsewhere (Baty 2019, 2020a).
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Figure 4. Snapshots taken at different times of the current density (colored iso-contours) overlaid with magnetic field lines.
The run is obtained for the coalescence setup (or Fadeev equilibrium) using ε = 0.2, α = π/2 (leading to a current sheet localized
at x = 0.5), and η = ν = 3.2 × 10−4.

Figure 5. Maximum vorticity ΩM (a-curve) and maximum current density measured at the X-point JM (b-curve) as a function
of time, fo the run corresponding to the previous figure (Fadeev equilibrium) using ε = 0.2, α = π/2, and η = ν = 3.2 × 10−4

(i.e. Pm = 1).

4. RESULTS

4.1. Magnetic reconnection associated to the coalescence instability

The ideal MHD stability of the coalescence setup has been examined by Bondeson (1983) with a reduced linear

MHD framework. The use of the minimum energy principle shows that it is unstable due to the current-driven term
dJe
dψe

> 0 that makes the second order variation of the associated potential energy negative. Moreover, the resulting

linear growth rate scales as ε3/4.

An overview of the time evolution of the system is plotted in Figure 4 with snapshots of the current density overlaid

by a few magnetic field lines taken at different times. This corresponds to a simulation obtained with FINMHD, where
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Figure 6. Scaling study of different parameters (Vs, JM , and ΩM ) with resistivity parameter η deduced for many runs of the
coalescence setup at different magnetic Prandtl Pm, i.e. Pm = 0.1, 1, 3, 10, 20, and 33. Sweet-Parker-like (SP) scalings, and
Biskamp-Welter-like (BW) scaling laws with η−α for Vs (α value varying in the range [1/3 : 3/4]) are plotted for comparison
(see also text) for the BW1-2-3.

a run employing ε = 0.2 and α = π/2 in a periodic domain along the x direction [−1 : 1] is considered, i.e. with k = 2π.

Indeed, a current sheet is observed to form at t ' 15tA (localized at x = 0.5), leading to a magnetic reconnection

process between the two islands which ends up at t ' 20tA. The Alfvén time tA is defined as tA = Lc/VA, with Lc
the characteristic unit length (here the half periodic length of the Fadeev configuration) and VA = 1 (i.e. B0 = 1)

in our units. The maximum vorticity ΩM and maximum current density taken at the X-point of the current sheet

JM are measured as function of time and are plotted in Figure 5 for the same run. The linear phase is clearly visible

with the vorticity variation leading to an estimate of the linear growth rate γtA ' 0.1 that is in agreement with

values reported in the literature (see Knoll & Chacón (2006) and references therein). Note that, the numerical noise is

sufficient to let the system develop the unstable mode, without the help of any small perturbation added initially, as

stated in the previous section. During the reconnection phase, the maximum current density JM is not constant, as it

increases, reaching a peak value before decreasing. Consequently, this complicates the comparison with Sweet-Parker
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Figure 7. Reconnection rate estimated from the peak density current via ηJM for the coalescence setup, corresponding to
the cases shown in the previous figure. The resulting SP (the fitted law is 1.7 × η1/2) and BW1-2-3 expected scaling laws in
η0 − η−1/4 − η−5/8 are also plotted for comparison.

Figure 8. Scaling study of different parameters (Vs, and JM ) with magnetic Prandtl parameter Pm deduced for runs of the
coalescence setup at four different resistivities (i.e η = 4× 10−5, 1× 10−4, 3× 10−4, and 1× 10−3). The SP expected scalings in
(1 + Pm)−1/2 and (1 + Pm)−1/4 for Vs and JM (see Section 2) respectively are also plotted for comparison. Additional power

laws (Sca1) following P
−3/4
m and P

−5/8
m dependences for Vs and JM plots respectively are also plotted.

model which assumes a steady-state reconnection. However, as done previously, we can use the peak values of ΩM ,

and JM in order to test the dependence with the dissipation parameters (η and ν) in the following study. For the run

illustrated in Figures 4-5, this corresponds to a time t ' 16.5tA. Note that for the lowest dissipation parameters used

in this study, typically when η, and/or ν are of the order 10−5, this first peak value is followed by other secondary

peaks of lowest amplitude because of a sloshing effect described by Knoll & Chacón (2006). We thus consider only the

first peak for the scaling laws (see below).
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As a first testing procedure of the theoretical scaling laws previously obtained in this work (see Section 2), we

examine the dependence of the important parameters with the resistivity parameter η for a fixed value of the magnetic

Reynolds number Pm. The results are plotted in Figure 6 for different Pm values, i.e. Pm = 0.1, 1, 3, 10, 20, and 33.

The outflow velocity Vs is shown to become independent of η in the limit of very small resistivity values, as expected

from SP model. When Pm is additionally much lower than unity (case Pm = 0.1), it is exactly the Alfvén speed that

is expected from the SP model with a value 0.65 in our units. This latter value is in very good agreement with the

value reported by Knoll & Chacón (2006) (see Figure 7). This saturated Vs value depends on Pm (see dependence

with Pm in the second testing procedure below). Moreover, in the opposing limit of relatively high η values, one can

see a decreasing dependence with the resistivity that we approximate to be exponential-like η−α with α a real positive

exponent. We also obtain that α is not constant as it typically varies between α ' 1/3 (for Pm = 0.1), α ' 1/2 (for

Pm = 1), and α ' 3/4 (for Pm = 33). As the outflow velocity depends on Be and L as obtained in Section 2, this

reflects the dependence of these two parameters (taken as fixed and constant in the standard SP model). A dependence

of Be in η−1/2 was proposed by De Luca & Craig (1992) in order to explain numerical results obtained by Biskamp &

Welter (1980) (BM study hereafter) where JM scales as η−1 instead of η−1/2 (i.e. the SP value). We thus call these

three dependences BW1 (case with α = 1/3), BW2 (α = 1/2), and BW3 (α = 3/4). Looking at the corresponding

maximum peak values for the current density JM , one can see the transition between the SP scaling law η−1/2 (for

small resistivity limit) and scaling laws in η−1, η−5/4, η−13/8 for BM1, BM2, and BM3 regimes respectively. This

follows from the B
3/2
e parameter for JM that consequently scales as η−1/2−3α/2 (see Section 2). A fitted law for JM in

the small η/Pm limits is JM = 1.7 × η−1/2 in our units, leading to the estimate for the length L ' 0.1 as Be ' 0.65,

that is in agreement with the value deduced from direct estimate from our simulations. A similar conclusion can be

drawn from the peak vorticity ΩM . These above results lead to the reconnection rate ηJM plotted in Figure 7. Thus,

the SP reconnection rate scaling law in η1/2 is obtained in the small resistivity limit, while in the opposite limit scaling

laws in η0, η−1/4, and η−5/8 are checked for BM1, BM2, and BM3 regimes respectively. Finally, note that we have

found that the transition between the SP-like scaling and different BW-like ones are mainly due to the Be dependence

with the resistivity coefficient η. There is also another effect due to the dependence of the length L with η. This is

visible for the very highest η values employed in the simulations in Figure 6. This latter effect is however found to be

weaker compared to the Be one reported above and more difficult to explore into detail.

Additionally, the previous figures also clearly show that the results depend on Pm in the vanishing η limit. For

example, the outflow velocity Vs is 0.65 for small Pm (i.e. Pm = 0.1), and Vs = 0.13 for Pm = 33. Thus, in a second

testing procedure, we examine the dependence of the important parameters with the magnetic Prandtl number for

different fixed values of the resistivity parameter η. Typically, we use η = 4× 10−5, 1× 10−4, 3× 10−4, and 1× 10−3.

The results are plotted in Figure 8 for Vs and JM . A transition between a SP-like scaling law obtained low low Pm
values (typically lower than unity) and a ’Sca1’ power law in P

−3/4
m for Vs, and in P

−5/8
m for JM . The results for

ΩM (not shown) are similar to the JM plot. According to the analytical scalings deduced in Section 2, this infers a

dependence for Be in P
−1/4
m for large enough Pm values. This is also valid for the four resistivity values investigated

in this analysis.

In summary, we have obtained that the standard SP scaling laws are recovered only in the small η and Pm limit as

expected from SP model. When considering the opposite limit, modified scalings must be considered mainly because

the inflowing magnetic field Be is not constant and depends on these two dissipative parameters. More precisely, a

dependence Be ∝ η−α is deduced from our simulations, with α varying in the range [1/3 : 3/4] when Pm is varying

between small values (i.e. much lower than unity) and large values (i.e. much larger than unity). This is similar to

a scaling deduced by Biskamp and Welter, where Be ∝ η−1/2 was previously reported in an incompressible numerical

study. The main consequence of this dependence is to alter the SP scalings because of an additional B
3/2
e ∝ η−3α/2

factor in the peak density current JM and associated reconnection rate (see Figure 7 for example). Moreover, a

dependence Be ∝ P−1/4
m is deduced when Pm is not small enough (typically when Pm >> 1), whatever the resistivity

value. One must note the smallest resistivity value employed in this coalescence setup is η ' 10−5, as it corresponds

to a Lundquist number close to the critical value for plasmoid regime. When writing this paper, we were aware of a

recent study using a very efficient MHD finite-element code similar to FINMHD, which reports a JM value for the

peak current density of 140 and outflow speed of 0.38 for a run with η = 1×10−4 and Pm = 1 for the same coalescence

setup (Tang et al. 2021). These values are exactly the values we deduced from our simulations (see Figure 6), building

thus strong confidence in our results.
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Figure 9. Snapshots taken at different times of the current density (colored iso-contours) overlaid with magnetic field lines.
The run is obtained for the tilt setup using η = ν = 1 × 10−3.

Figure 10. Maximum vorticity ΩM and maximum current density JM as a function of time fo the run corresponding to the
previous figure. An horizonthal line indicates the average current value (i.e. 77) during reconnection phase, which also agrees
with the value predicted from the SP theory.

4.2. Magnetic reconnection associated to the tilt instability setup

The ideal MHD stability of the tilt mode has been examined by Richard et al. (1990). The energy principle in the

reduced MHD approximation shows that the equilibrium is unstable with a linear eigenfunction that is a combination

of rotation and outward displacement. The current-driven term is again at the origin of this ideal mode. This result

has been numerically confirmed in reduced MHD framework (Lankalapalli et al. 2007) and using full compressible

MHD (Keppens et al. 2014; Ripperda et al. 2017). The instability called the tilt mode proceeds with a linear growth

rate γtA ' 1.3− 1.4, where the Alfvén time is now tA = R/VA (with R being the dipole radius and VA being defined

with the asymptotic field B0).

An overview of the time evolution of the system is plotted in Figure 9 with snapshots of the current density overlaid

by a few magnetic field lines taken at different times. This corresponds to a simulation obtained with FINMHD, where

a run employing η = ν = 1 × 10−3 is chosen. The maximum vorticity ΩM and maximum current density JM taken

over the whole domain measured as function of time are plotted in Figure 10 for the same run. The reconnection

phase is starting when two twins curved curent layers (of opposite sign) are formed, typically at the frontier between

the two closed field lines regions and the external region (see second snapshot in Figure 9). Then, closed filed lines

reconnect with open ones, leading to new field lines (see the third snapshot). As an important result, and contrary to

the coalescence mode, the reconnection phase is proceeding with a nearly constant current density (that is also close

to the value for the first peak) for the tilt case, as one can see in Figure 10.
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Figure 11. Scaling study of different parameters (Vs, JM , and ΩM ) with resistivity parameter η deduced for many runs of the
tilt setup at different magnetic Prandtl Pm, Expected SP scalings, and power laws with exponents of −1/6 and −3/4 are also
plotted for comparison.

Following the same procedure as taken for the coalescence setup, we first investigate the dependence of the important

parameters with the resistivity coefficient η for different fixed values of the magnetic Reynolds number Pm in the range

[0.1 : 100]. The results are illustrated in Figure 11. First, one see that the deviation from SP scaling observed in JM
and ΩM curves for the highest values of the resistivity are weaker than the one obtained from the coalescence setup.

Indeed, a modified scaling law in η−3/4 is obtained for the largest Pm cases. This is in agreement with the results for

Vs showing a transition towards a dependence that scales approximatively like η−1/6, in agreement with a dependence

for the inflowing magnetic field Be ∝ η−1/6 for the tilt setup, according to scaling laws of Section 2 where we neglect

the dependence of L with η. This dependence is even weaker for the smallest Pm values. As concerns the reconnection

rate, estimated via the term ηJM , the results plotted in Figure 12 remains close to the SP scaling that follows a law as

2.8× η1/2 in ou units (for vanishing dissipative parameters). This agrees well with the inflowing value of the magnetic

field Be ' 1.88 (see Figure 11) and the half-length estimate L ' 1, for vanishing η and Pm.
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Figure 12. Reconnection rate estimated from the maximum density current via ηJM for the tilt setup, corresponding to the
cases shown in the previous figure. The resulting SP (the fitted law is 2.8 × η1/2) valid for the small resistivity and Prandtl
number limit is also plotted for comparison.

As done for the coalescence setup, In our second testing procedure, we examine the dependence of the important

parameters with the magnetic Prandtl number for different fixed values of the resistivity parameter η. Typically, we

use η = 3×10−4, 5×10−4, 2×10−3, and 6×10−3. The results are plotted in Figure 13. First, the expected SP scaling

for Vs with the (1 + Pm)−1/2 dependence is retrieved at small enough Pm. However, a transition to a power law in

P−0.25
m − P−0.4

m (the case P−0.25
m being for the smallest resistivity value) is obtained in the high Pm limit. Thus, the

slope becomes weaker at large Pm for the tilt setup, that is the opposite effect compared to the results obtained for

the coalescence setup where the transition shows a slope increase with a power law in P−0.75
m for Vs (see Figure 8).

As a consequence, assuming that L is independent of Pm, this infers now a weak dependence for the magnetic field in

this high Pm limit, Be ∝ P βm with a positive exponent β ' 0.1− 0.25.

In summary, we have obtained that the standard SP scaling laws are recovered only in the small η and Pm limit

as expected. When considering the opposite limit, modified scalings must be considered mainly because the inflowing

magnetic field Be is not constant and depends on these two dissipative parameters. More precisely, a dependence
Be ∝ η−1/6 is deduced from our simulations in the opposite high resistivity regime, independently of the magnetic

Prandtl number Pm. Moreover, Be ∝ P βm with a positive exponent β ' 0.1 − 0.25 that slightly depends on the

resistivity value in the large Pm limit. As for the coalescence instability, the smallest resistivity value employed for

the tilt setup is η ' 1× 10−4 roughly coinciding with the critical Lundquist number for plasmoid instability.

5. CONCLUSION

In this study, we have revisited the well known Sweet-Parker model for 2D incompressible magnetic reconnection,

focussing on the possible extra dependences of the length 2L and inflowing magnetic field Be with the dissipation

parameters taken to be η and Pm.

Taking two different setups involving unstable ideal MHD equilibria (namely the coalescence and tilt modes) to form

the current sheet, we have illustrated the effect of Be(η, Pm) using numerical simulations. As expected, the standard

visco-resistive SP scaling is retrieved in the limit of small enough resistivity and magnetic Prandtl number values.

However, non negligible deviations are observed in the other limit. More precisely, a first dependence Be ∝ η−α is

deduced, with the parameter α ' 1/6 for the tilt, and α varying in the range [1/3 : 3/4] for the coalescence mode.

The second dependence observed is Be ∝ P βm, with the parameter being positive as β ' 0.1 − 0.25 for the tilt, and

negative β ' −0.25 for coalescence. The deviations are thus weaker for the tilt instability setup when compared to
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the coalescence one. Consequently, the initial unstable configuration is also important to this respect. This is not

surprising, as for example the geometrical structure of the current sheet is evidently different during the tilt instability

(e.g. curved current layer) when compared to the coalescence setup.

We hope that this study will be useful in order to help to correctly interpret the results of numerical simulations

involving magnetic reconnection. It emphasizes the importance of determining the dissipation parameters like the

resistivity and viscosity, that are not always explicitly known. This is for example the case when they are dominated

by truncation errors due to the numerical scheme discretization. This is true for testing procedures using MHD codes

in the SP regime. This is also the case when one to focus on the plasmoid-dominated regime (i.e. for very small

resistivity values or equivalently very high S values) without considering the viscosity effect via the magnetic Prandtl

number Pm. Indeed, as one can see in Figures 7 and 12, the reconnection rate is even noticeably affected for Pm values

of order 10 for the smallest resistivity values employed in this work.

Magnetic reconnection is believed to be the underlying mechanism that explains explosive events observed in many

magnetically dominated plasmas. This is for example the case for flares in the solar corona. However, the timescales

involved in classical two-dimensional (2D) reconnection models within the macroscopic MHD regime are too slow to

match the observations or experiments. Indeed, the reconnection rate predicted by Sweet-Parker model is too low by a

few (or even many) orders of magnitude for the relevant Lundquist numbers. For typical parameters representative of

the solar corona, S is of order 1012, leading to a normalized SP reconnection rate of order 10−6 at negligible viscosity,

that is much lower than the value of 10−2 − 10−1 required to match the observations. However, the plasmoid regime

that is relevant at such huge value of the Lundquist number, is a stochastic time-dependent reconnection solution with

a fast time-averaged rate independent of S. The normalized reconnection rate values reported in the literature are of

order 0.01, much higher than the Sweet-Parker rate, and thus could be sufficient. However, in such studies the viscosity

effect is often neglected, mainly for the sake of simplicity. The (collisional) viscosity parameter value is expected to

be at least equal to the resistivity one in the solar corona. Future studies including the Pm effect are thus required to

explore this regime.



On the Sweet-Parker model 15

Figure 13. Scaling study of different parameters (Vs, JM , ΩM ) with magnetic Prandtl parameter Pm deduced for runs of the
tilt setup at four different resistivity values (i.e η = 3 × 10−4, 5 × 10−4, 2 × 10−3, and 6 × 10−3). The expected Sweet-Parker
(SP1/SP2) scalings in (1 + Pm)−1/2, (1 + Pm)−1/4, and (1 + Pm)−3/4, for Vs, JM , and ΩM respectively, are also plotted for

comparison. Additional power laws following P
−1/4
m − P−0.4

m dependences for Vs are also plotted.
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